Comultiplication Rules for the Double Schur Functions and Cauchy Identities
نویسنده
چکیده
The double Schur functions form a distinguished basis of the ring Λ(x ||a) which is a multiparameter generalization of the ring of symmetric functions Λ(x). The canonical comultiplication on Λ(x) is extended to Λ(x ||a) in a natural way so that the double power sums symmetric functions are primitive elements. We calculate the dual Littlewood–Richardson coefficients in two different ways thus providing comultiplication rules for the double Schur functions. We also prove multiparameter analogues of the Cauchy identity. A new family of Schur type functions plays the role of a dual object in the identities. We describe some properties of these dual Schur functions including a combinatorial presentation and an expansion formula in terms of the ordinary Schur functions. The dual Littlewood– Richardson coefficients provide a multiplication rule for the dual Schur functions.
منابع مشابه
Traces, Cauchy identity, Schur polynomials
Such identities arise in Rankin-Selberg integral representations of L-functions. For GL2, a naive, direct computation is sufficient. However, for general GLn and other higher-rank groups, direct computation is inadequate. Further, connecting local Rankin-Selberg computations to Schur functions usefully connects these computations to the Shintani-Casselman-Shalika formulas for spherical p-adic W...
متن کاملPieri and Cauchy Formulae for Ribbon Tableaux
In [LLT] Lascoux, Leclerc and Thibon introduced symmetric functions Gλ which are spin and weight generating functions for ribbon tableaux. This article is aimed at studying these functions in analogy with Schur functions. In particular we will describe: • a Pieri and dual-Pieri formula for ribbon functions, • a ribbon Murnaghan-Nakayama formula, • ribbon Cauchy and dual Cauchy identities, • and...
متن کاملRibbon Tableaux and the Heisenberg Algebra
In [LLT] Lascoux, Leclerc and Thibon introduced symmetric functions Gλ which are spin and weight generating functions for ribbon tableaux. This article is aimed at studying these functions in analogy with Schur functions. In particular we will describe: • a Pieri and dual-Pieri formula for ribbon functions, • a ribbon Murnagham-Nakayama formula, • ribbon Cauchy and dual Cauchy identities, • and...
متن کاملLattice Paths and the Flagged Cauchy Determinant
We obtain a flagged form of the Cauchy determinant and establish a correspondence between this determinant and nonintersecting lattice paths, from which it follows that Cauchy identity on Schur functions. By choosing different origins and destinations for the lattice paths, we are led to an identity of Gessel on the Cauchy sum of Schur functions in terms of the complete symmetric functions in t...
متن کاملQuasisymmetric (k, l)-hook Schur functions
We introduce a quasisymmetric generalization of Berele and Regev’s hook Schur functions and prove that these new quasisymmetric hook Schur functions decompose the hook Schur functions in a natural way. In this paper we examine the combinatorics of the quasisymmetric hook Schur functions, providing analogues of the RobinsonSchensted-Knuth algorithm and a generalized Cauchy Identity. Résumé. Nous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009